PA's Efforts to Address Operation, Maintenance and Replacement of AMD Passive Treatment Systems

Pam Milavec

PA DEP Bureau of Abandoned Mine Reclamation Russell Wagner PA DEP Bureau of Watershed Management

> National NPS Coordinator's Meeting Park City, Utah June 20, 2006

The Need?

Over \$60 million worth of publicly funded AMD passive treatment facilities currently in operation in PA. Source: OSM AMD Databas

The Need

- More than 275 AMD passive treatment systems project sites are known to exist in Pennsylvania.
- State funding through the Growing Greener and Growing Greener II program (\$625 million over 6 years)

The Need

- Original O,M,&R Workgroup formed in 2001-Recommendations made to Department Secretary
- Group revived/expanded in 2003 with new recommendations
- Group focused on AMD needs, but also included O,M, &R concerns on Non-AMD structures

Why Operation and Maintenance?

- "An ounce of prevention is worth a pound of cure." Ben Franklin
- Systems that are not maintained are destined to fail!!
- Failed systems can have significant environmental consequences.

What Does O, M & R Involve?

Operation Examples

- Inspections
- Litter control
- Vegetation control
- Mechanical maintenance (flushing)
- Insect and vector control
- Monitoring water sampling
- Physical stability and erosion control

Routine Operations: Treatment System Sampling

Routine Operations: Debris Removal

Routine Operations: Flushing

Maintenance Examples

- Dredging and sediment removal
- Repairing damage after major storm events
- Repairing cracks or leaks
- Repairing damage from vandalism
- Adding limestone, compost, sand, or gravel
- Adjusting grade or outlet structures

Maintenance: Baffle Repair

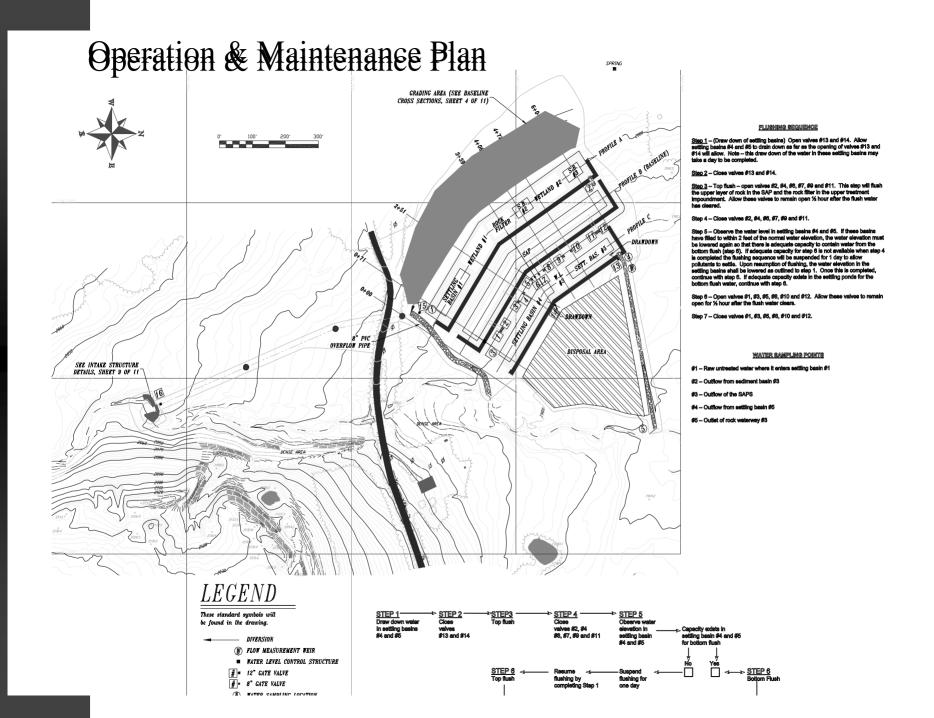
Maintenance: Influent Modification

Oven Run Site B: Modify Inlet Structure

Oven Run Site B: Accumulated Iron

Oven Run Site B: Iron Removal

Oven Run Site B: Compost Replacement



Audenreid Treatment System

Replacement Concerns

- Estimate BMP design life
- Incorporate new technology
- What is the cost to replace?
- Who will replace?

What Does O, M & R Cost?

Calculating O, M & R Costs

- Calculation of factor: [(actual total O,M&R costs)/(life of system)/(construction cost)] X 100
- Calculated an Average O, M & R Factor of 4%
- **Use of factor:** Construction Cost X (O,M&R factor) = average annual O,M&R for project
- Example: \$200,000 project with 4% factor will cost an average \$8,000 per year for O,M&R

Average Annual Factors for AMD Treatment Systems *

■ Vertical Flow Systems	5%
■ Anoxic Limestone Drain Systems	4%
■ Compost Anaerobic wetlands	4%
■ Pyrolusite© Systems	3%
■ Open limestone channels	1%
■ Lime sand addition programs	33-50%
■ Automated lime doser	13%

^{*} Annual percentage of construction costs

Breakdown of O, M & R Costs for Vertical Flow Systems

■ Routine operations (sampling,	20.0%
inspections, flushing)	
■ Water sample lab analyses	10%
■ Maintenance – repairs & supplies	30%
■ System reconstruction	40%

Note: This is a breakdown of the expected 5% of construction costs needed for annual maintenance of vertical flow systems

How Can Costs Be Reduced?

- Sponsor who takes on projected O & M activities would lessen the O, M & R costs by 20%-60%
 - ◆ Examples:
 - ◆ Sponsor handles routine operation and maintenance (monitoring, sampling, etc.)
 - ◆ Major maintenance and replacement costs are based on government bid projects; sponsors who are creative with local resources may decrease these costs

Guiding Principles for Projects in Pennsylvania

True Sustainable Operation,
Maintenance & Replacement
is based on <u>LOCAL</u>
<u>COMMUNITY</u> Ownership
& Involvement

Workgroup Breakdown of Responsibilities

- Routine Operations (20%): Local Group
- Lab Analyses (10%): DEP (or other gov't source)
- Maintenance (30%): Gov't & Local Group
- Replacement Cost (40%): Gov't
- Total Cost: Gov't 65%, Local Group – 35% (can be in-kind match)

Revised 11/5/03 Recommendations:

Recommendation #1: Funding

- •Funding now available through Growing Greener for non-routine repairs and replacement
- •Department is looking very seriously at additional ways to provide sustainability.

Recommendation #2: Quick Response

WPCAMR has received a \$350,000 grant under this year's Growing Greener II funding to establish and administer a Quick Response program.

Recommendation #3: Lab Analysis

WPCAMR received a Growing Greener grant last year to establish and administer a lab analysis funding program for watershed groups to monitor their treatment system.

Web Sites

http://www.dep.state.pa.us/dep/deputate/minres/bamr/amd/science_of_AMD.htm http://audenreid.blogspot.com/

http://www.orangewaternetwork.org/

http://www.amrclearinghouse.org/

Russell Wagner ruwagner@state.pa.us

